Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1580701

RESUMEN

Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient's plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.


Asunto(s)
Antivirales/efectos adversos , Antivirales/metabolismo , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/efectos adversos , Hidroxicloroquina/metabolismo , Anciano , Antivirales/uso terapéutico , COVID-19/complicaciones , COVID-19/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Correlación de Datos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ácidos Grasos/farmacología , Hígado Graso/complicaciones , Hígado Graso/metabolismo , Femenino , Humanos , Hidroxicloroquina/uso terapéutico , Modelos Lineales , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Factores de Riesgo
2.
Int J Pharm ; 608: 121053, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1373073

RESUMEN

As global vaccine production capacity is limited, every optimization strategy must be explored to rapidly increase the number of people vaccinated. The objective of this study is to determine which medical devices allow the extraction of the maximum number of doses from different vaccine vials (Pfizer-BioNTech, AstraZeneca, Moderna and Johnson & Johnson vaccines) by analyzing all the factors involved in the preparation of the injected doses. By measuring the dead-volume of 32 syringe-needle combinations, we show that fixed-needle syringe with a dead-volume of less than 5 µL can extract up to 7 doses from Pfizer vials, 13 doses from AstraZeneca vials, 12 doses from Moderna vials and 6 doses from Johnson & Johnson vials. We found that the syringe accuracy is important, and can compromise the chances of extracting additional doses when withdrawing too large a volume. For Pfizer vaccine, particular attention must be paid to the choice of dilution syringe, which may compromise the extraction of the 7th dose. The withdrawal of extra doses from vaccine vials was not operator-dependent. In this unprecedented health context, the medical device considerations presented here could help to optimize every COVID-19 vaccine vial.


Asunto(s)
COVID-19 , Jeringas , Vacunas contra la COVID-19 , Humanos , Agujas , SARS-CoV-2
3.
J Fungi (Basel) ; 7(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1234760

RESUMEN

Invasive pulmonary aspergillosis (IPA) in intensive care unit patients is a major concern. Influenza-associated acute respiratory distress syndrome (ARDS) and severe COVID-19 patients are both at risk of developing invasive fungal diseases. We used the new international definitions of influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) to compare the demographic, clinical, biological, and radiological aspects of IAPA and CAPA in a monocentric retrospective study. A total of 120 patients were included, 71 with influenza and 49 with COVID-19-associated ARDS. Among them, 27 fulfilled the newly published criteria of IPA: 17/71 IAPA (23.9%) and 10/49 CAPA (20.4%). Kaplan-Meier curves showed significantly higher 90-day mortality for IPA patients overall (p = 0.032), whereas mortality did not differ between CAPA and IAPA patients. Radiological findings showed differences between IAPA and CAPA, with a higher proportion of features suggestive of IPA during IAPA. Lastly, a wide proportion of IPA patients had low plasma voriconazole concentrations with a higher delay to reach concentrations > 2 mg/L in CAPA vs. IAPA patients (p = 0.045). Severe COVID-19 and influenza patients appeared very similar in terms of prevalence of IPA and outcome. The dramatic consequences on the patients' prognosis emphasize the need for a better awareness in these particular populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA